这是全球首份AR陈诉 2万字汇报你它为什么比VR还酷(6)
时间:2017-03-10 12:00 来源:视觉环球 作者:展厅设计编辑 点击:次
物体检测和识别的目的是发现并找到场景中的目标,这是场景理解中的关键一环。广义的物体检测和识别技术是基于图像的基本信息(各类型特征)和先验知识模型(物体信息表示),通过相关的算法实现对场景内容分析的过程。在增强现实领域,常见的检测和识别任务有,人脸检测、行人检测、车辆检测、手势识别、生物识别、情感识别、自然场景识别等。 目前,通用的物体检测和识别技术,根据不同的思路可以分为两种:一种是从分类和检测的角度出发,通过机器学习算法训练得到某一类对象的一般性特征,从而生成数据模型。这种方法检测或者识别出的目标不是某一个具体的个体,而是一类对象,如汽车、人脸、植物等。这种识别由于是语义上的检测和识别,所以并不存在精确的几何关系,也更适用于强调增强辅助信息,不强调位置的应用场景中。如检测人脸后显示年龄、性别等。另外一种识别是从图像匹配的角度出发,数据库中保存了图像的特征以及对应的标注信息,在实际使用过程中,通过图像匹配的方法找到最相关的图像,从而定位环境中的目标,进一步得到识别图像和目标图像的精确位置,这种识别适用于需要对环境进行精确跟踪的应用场景。 就现阶段而言,识别检测技术的难点之一是技术的碎片化。这一方面是由于每一类对象都会有其独有的特征,而不同特征的提取和处理都需要实现一一对应,这对识别检测是一个巨大的挑战。另一方面,图像本身还受到噪声、尺度、旋转、光照、姿态等因素的影响。近几年来,随着深度学习技术的不断成熟,检测和识别方法也越来越统一,而性能也在不断提高中。 跟踪定位技术 跟踪技术的方法可以分为基于硬件和基于视觉两大类。基于硬件设备的三维跟踪定位方法在实现跟踪定位的过程中使用了一些特殊的测量仪器或设备。常用的设备包括机械式跟踪器、电磁式跟踪器、超声波跟踪器、惯性跟踪器以及光学跟踪等。光学跟踪和惯性跟踪是比较常用的两种硬件跟踪方式,HTC Vive就是采用了光学跟踪和惯性跟踪两种硬件来定位头部的位置。使用硬件设备构成的跟踪系统大多是开环系统,跟踪精确取决于硬件设备自身的性能,其算法的扩展性要差一些,且成本相对较高。 HTC Vive 采用光学和惯性跟踪设备 视觉跟踪方法具备更强的扩展性,其系统多为闭环系统,更依赖于优化算法来解决跟踪精度问题。相比于上述基于硬件设备的跟踪方法,计算机视觉跟踪方法提供了一种非接触式的、精确的、低成本的解决方法,但是基于视觉的方法受限于图像本身,噪声、尺度、旋转、光照、姿态变化等因素都会对跟踪精度造成较大的影响,因此更好地处理这些影响因素,研发鲁棒性强的算法就成为下一步AR技术的研究重点。 根据数据的生成方式,视觉跟踪技术的算法可以分为两种,一种是基于模板匹配的方式,预先对需要跟踪的target进行训练,在跟踪阶段通过不断的跟预存训练数据进行比对解算当前的位姿。这类方法的好处是速度较快、数据量小、系统简单,适用于一些特定的场景,但不适用于大范围的场景。 另外一种是SLAM方法,也就是即时定位和地图构建技术。这类技术不需要预存场景信息,而是在运行阶段完成对于场景的构建以及跟踪。其优点是不需要预存场景,可以跟踪较大范围,适用面广,在跟踪的同时也可以完成对于场景结构的重建。但目前这类技术计算速度慢、数据量大、算法复杂度高,对于系统的要求也较高。Hololens和Magic Leap的宣传视频中都展现了这方面技术,而亮风台对相应的技术也在研发当中。 SLAM跟踪技术 为了弥补不同跟踪技术的缺点,许多研究者采用硬件和视觉混合跟踪的方法来取长补短,以满足增强现实系统高精度跟踪定位的要求。 2、增强现实的显示技术 透射式头盔显示器 透射式头盔显示器 Hololens 目前大多数的AR系统采用透视式头盔显示器实现虚拟环境与真实环境的融合。根据真实环境的表现形式划分,主要有视频透视式头盔显示器和光学透视式头盔显示器两种形式。 (责任编辑:环球编辑) |